Fp-tree Based Spatial Co-location Pattern Mining
نویسندگان
چکیده
A co-location pattern is a set of spatial features frequently located together in space. A frequent pattern is a set of items that frequently appears in a transaction database. Since its introduction, the paradigm of frequent pattern mining has undergone a shift from candidate generation-and-test based approaches to projection based approaches. Co-location patterns resemble frequent patterns in many aspects. However, the lack of transaction concept, which is crucial in frequent pattern mining, makes the similar shift of paradigm in co-location pattern mining very difficult. This thesis investigates a projection based co-location pattern mining paradigm. In particular, a FP-tree based co-location mining framework and an algorithm called FP-CM, for FP-tree based co-location miner, are proposed. It is proved that FP-CM is complete, correct, and only requires a small constant number of database scans. The experimental results show that FP-CM outperforms candidate generation-and-test based co-location miner by an order of magnitude. ii ACKNOWLEDGEMENTS This thesis would not have been finished without my research advisor, Dr. Yan Huang. I would like to thank her for her continuous encouragement and support during my work on the thesis. I would also like to thank Dr. Mikler and Dr. Brazile for their help and being on my thesis committee. I also thank my family and friends for their support throughout these years.
منابع مشابه
Mining of Spatial Co-location Pattern Implementation by Fp Growth
Mining co-location patterns from spatial databases may disclose the types of spatial features which are likely located as neighbours in space. Accordingly, we presented an algorithm previously for mining spatially co-located moving objects using spatial data mining techniques and Prim's Algorithm. In the previous technique, the scanning of database to mine the spatial co-location patterns took ...
متن کاملAn Efficient Algorithm for Mining Spatially Co-located Moving Objects
Mining co-location patterns from spatial databases may disclose the types of spatial features which are likely located as neighbors’ in space. Accordingly, we present an algorithm previously for mining spatially co-located moving objects using spatial data mining techniques and Prim’s Algorithm. In the previous technique, the scanning of database to mine the spatial co-location patterns took mu...
متن کاملEfficient Discovery of Spatial Co-Location Patterns Using the iCPI-tree
With the rapid growth and extensive applications of the spatial dataset, it’s getting more important to solve how to find spatial knowledge automatically from spatial datasets. Spatial co-location patterns represent the subsets of features whose instances are frequently located together in geographic space. It’s difficult to discovery co-location patterns because of the huge amount of data brou...
متن کاملMining Co-locations under Uncertainty
A co-location pattern represents a subset of spatial features whose events tend to locate together in spatial proximity. The certain case of the co-location pattern has been investigated. However, location information of spatial features is often imprecise, aggregated, or error prone. Because of the continuity nature of space, over-counting is a major problem. In the uncertain case, the problem...
متن کاملMining Of Spatial Co-location Pattern from Spatial Datasets
Spatial data mining, or knowledge discovery in spatial database, refers to the extraction of implicit knowledge, spatial relations, or other patterns not explicitly stored in spatial databases. Spatial data mining is the process of discovering interesting characteristics and patterns that may implicitly exist in spatial database. A huge amount of spatial data and newly emerging concept of Spati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005